Worksheet 1-1
 - Measuring Reaction Rates

Answer the questions in the space provided. You must show all of your work to receive full marks. All answers MUST be rounded to the correct number of Sig. Figures.

1. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is:

$$
\mathrm{Zn}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{ZnCl}_{2(a q)}
$$

A piece of zinc is dropped into 1.00 L of 0.100 M HCl and the following data were obtained:

Time	Mass of Zinc
0 s	0.016 g
4 s	0.014 g
8 s	0.012 g
12 s	0.010 g
16 s	0.008 g
20 s	0.006 g

a) Calculate the Rate of Reaction in grams of Zn consumed per second.

$$
\frac{\Delta \text { mass } 20}{\Delta \text { tine }}=\frac{0.06-0.060}{20 s}=\frac{0.01}{20}
$$

Answer

b) Calculate the Rate of Reaction in moles of Zn consumed per second.
$50 \times 10^{-4} \frac{\mathrm{~g}}{\mathrm{~s}} \times \frac{1 \mathrm{~mol}}{65.4 \mathrm{~g}}=7.6 \times 10^{-16}$

c) Write out the complete ionic equation for the reaction.

d) What will happen to the $\left[\mathrm{H}^{+}\right]$as the reaction proceeds? \qquad
e) What will happen to the $\left[\mathrm{Cl}^{-}\right]$as the reaction proceeds?

2. When magnesium is reacted with dilute hydrochloric acid (HCl), a reaction occurs in which hydrogen gas and magnesium chloride is formed.
a) Write a balanced formula equation for this reaction.

b) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the mass of Mg consumed in 5.0 minutes.
$x \operatorname{gatg}=5.0 \times 0 \frac{0}{5} \frac{m 0}{5} \times \frac{2439}{1 \mathrm{~mol}} \times \frac{605}{1 \mathrm{mn}} \times 5 \mathrm{~min}$

3. Given the reaction:

Suggest a method which could be used to monitor the rate of this reaction.
Change in cobra. Colartess \rightarrow brown
Same moles of gas prodied as consumed
ie. pressure will not change
4. Equal volumes of $\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}$ and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}{ }_{(\mathrm{aq})}$ are individually reacted with $0.10 \mathrm{M} \mathrm{MnO}_{4}{ }^{-}(\mathrm{aq})$, and the following data were obtained:

| Reactant | Concentration | Temperature |
| :---: | :---: | :---: | Time for complete reaction

Explain in detail why these results are obtained.
Fe^{27} is an oqueas ion En bonds need to be broken in $i_{1} i_{i}$, it will react faster even thagh't is at a bier conc and temp
5. Given the $2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$ reaction:
explain why this reaction is very slow at room temperature.
(1 mark)
The gases are diatomic and have covalent bonds which are string and hard to break.
6. On the following set of axes, draw the shape of the curve you would expect if you plotted the [HCI] vs. Time, starting immediately after the two reactants are mixed. The equation for the reaction is:

Explain how you got that particular shape. Be detailed.
-starting with HEl and as rein prowess it gets
used
can. canc.
As the cali bowers the ran will go slaver
7. Given the reaction: $\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}+\mathrm{NO}_{2(\mathrm{~g})}$, sketch the shapes of the curves on the following graphs assuming that some CO_{2} and NO is placed in a closed container and left to react. (2 marks)

8. Given the following reaction and graph:

$$
\mathrm{CaCO}_{3(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{CaCl}_{2(a q)}+\mathrm{CO}_{2(\xi)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

a) Calculate the average rate of reaction in $\mathrm{mL} \mathrm{CO}_{2} / \mathrm{min}$ for the time interval $0-2$ min. (2 marks)
$\frac{\Delta \text { vol }}{\Delta \text { rim }}=\frac{35-0}{2}=17.5 \mathrm{~mL} / \mathrm{mn} \quad 17.5 \mathrm{~m} / \mathrm{mon}$
b) Calculate the average rate of reaction in $\mathrm{mL} \mathrm{CO} 2 / \mathrm{min}$ for the time interval

Answer $7.5 \mathrm{~mL} / \mathrm{min}$
c) Explain why the rate in (b) is less than the rate in (a) (1 mark)

9. Given the reaction: $\mathbf{S n}_{(\mathrm{s})}+\mathbf{2} \mathbf{H C l}_{(\mathrm{aq})} \rightarrow \mathbf{H}_{2(\mathrm{~g})}+\mathbf{S n C l}_{2(\mathrm{qq})}$

Give 4 methods by which the rate of this reaction could be increased (4 marks)

10. The following able relates tie time and the mass of Zn during the reaction between Zn and $0.5 \mathrm{M} \mathrm{HNO}_{3}$:

$$
\mathrm{Zn}_{(s)}+2 \mathrm{HNO}_{3(a q)} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2(a q)}
$$

Time	Mass of Zn (g)
0.0 s	36.2 g
60.0 s	29.6 g
120.0 s	25.0 g
180.0 s	22.0 g

a) Calculate the reaction rate, in g/s, from time 0 to 60 s .

$$
\frac{3}{202-296}=0.11 g / s
$$

b) Calculate the reaction rate, in g / s, from time 120 s to 180 s .

$$
\frac{250-23}{62}=0.050 \mathrm{~g} / \mathrm{s}
$$

c) Explain why the rate in calculation " b " is less than that of calculation "a".

11. Give two reasons why water is effective at putting out fires. Use concepts learned in this unit so far.
Water can darease temp of the rem
water removes Os as a reactant
12. Consider the rate of the following reaction:

$$
\mathrm{Fe}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}_{2(g)}+\mathrm{FeCl}_{2(a q)}
$$

a) Is rate dependent on temperature? \qquad . Explain your answer.

b) Is rate dependent on pressure? \qquad . Explain your answer.

c) Is rate dependent on surface area? \qquad . Explain your answer.
\qquad
13. Consider the rate of gre following reaction:

$$
2 \mathrm{NaOCl}_{(a q)} \rightarrow 2 \mathrm{NaCl}_{(a q)}+\mathrm{O}_{2(g)}
$$

a) Is rate dependent on temperature? \qquad . Explain your answer.

b) Is rate dependent on pressure? \qquad . Explain your answer.

c) Is rate dependent on surface area? \qquad . Explain your answer.

