Example 4: Predicting which way a reaction will shift .
$\mathrm{K}_{\text {eq }}=49$ for $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \nleftarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$. If 2.0 mol of $\mathrm{NO}(\mathrm{g}), 0.20 \mathrm{~mol}$ of $\mathrm{O}_{2}(\mathrm{~g})$ and 0.40 mol of $\mathrm{NO}_{2}(\mathrm{~g})$ are put into a 2.0 L bulb which way will the reaction shift in order to reach equilibrium?
t* When making predictions you need to calculate the Reaction Quotient (Q), this is to see where Thai Req Expressions for \mathcal{Q} are the same as your equilibrium constant.

STEP 1: Write out the equilibrium expression

$$
\begin{aligned}
& K_{e q}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}} \\
& \begin{array}{l}
C=\frac{n}{V} \\
\text { STEP 2: Calculate all starting concentrations } \\
{\left[\mathrm{NO}_{\text {Start }}=\frac{20 \mathrm{~mol}}{2.0 \mathrm{~L}} \quad\left[0_{2}\right]_{\text {start }}=\frac{0.2 \mathrm{~mol}}{2.0 \mathrm{~L}}\right.}
\end{array} \\
& {\left[\mathrm{NO}_{2}\right]=\frac{0.4 \mathrm{~mol}}{2.0 \mathrm{~L}}} \\
& {[\mathrm{NO}]_{\text {start }}=1.0 \mathrm{M}} \\
& {\left[\mathrm{O}_{2}\right]_{\text {Start }}=0.10 \mathrm{M}} \\
& {\left[\mathrm{NO}_{2}\right]=0.20 \mathrm{M}} \\
& \text { STEP 3: Solve for } \mathrm{Q} \\
& \text { STEP 4: Make a prediction } \\
& Q=0.40 \\
& Q<\text { key } \\
& \overrightarrow{R \rightarrow P} \\
& K_{e q}=49 \\
& K_{\text {eq }}=\frac{P}{R} \\
& Q \text { needs to increase to reach eq. } \\
& \text { is T Products so shift to } \\
& \text { products (right) }
\end{aligned}
$$

Example 5: Finding all concentrations at equilibrium
$\mathrm{Keq}=3.5$ for $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \quad \longleftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$. If 4.0 mol of $\mathrm{SO}_{2}(\mathrm{~g})$ and 4.0 mol of $\mathrm{NO}_{2}(\mathrm{~g})$ are placed in a 5.0 L bulb and allowed to come to equilibrium, what concentration of all species will exist at equilibrium?

STEP 1: Write out the equilibrium expression

$$
h_{e q}=\frac{\left[\mathrm{SO}_{3}\right]\left[\mathrm{NO}^{2}\right]}{\left[\mathrm{NO}_{2}\right]\left[\mathrm{SO}_{2}\right]}
$$

$$
\begin{array}{rlrl}
{\left[\mathrm{SO}_{2}\right]_{i}} & =\frac{4 m_{0} 1}{5} & {\left[\mathrm{NO}_{2}\right]} & =\frac{4}{5} \\
& =0.8 & =0.8
\end{array}
$$

STEP 2: Set up ICE box

	$\mathrm{SO}_{2(g)}+\mathrm{NO}_{2}(g)$	$\rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$	$+\mathrm{NO}_{(9)}$
I	0.8	0.8	0
C	0		
C	$-x$	$-x$	$+x$

$$
\begin{aligned}
& \text { STEP 3: Solve } \\
& K_{\text {eq }}=3.5=\frac{(x)(x)}{(0.8-x)(0.8-x)} \\
& \int 1.496-1.87 x=1 x \\
& +1.87 x+1.87 x \\
& \frac{1.496}{2.87}=\frac{287 x}{2.88} \\
& 0.521 M=x \\
& 1.87=\frac{x}{0.8-x} \\
& 1.87(0.8-x)=x \\
& {\left[\mathrm{SO}_{2}\right]=\left[\mathrm{NO}_{2}\right]=0.8-x .101} \\
& \begin{array}{l}
0.8-0.521 \\
=0.28 \mathrm{M}
\end{array}
\end{aligned}
$$

EXAMPLE 6: A shift back to equilibrium
1.0 reaction vessel contained 1.0 mol of $\mathrm{SO}_{2}, 4.0 \mathrm{~mol}$ of $\mathrm{NO}_{2}, 4.0 \mathrm{~mol}$ of SO_{3} and 4.0 mol of NO at equimbrium according to $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$. If 3.0 mol of SO_{2} is added to the mixture, what will be the new concentration of NO when equilibrium is re-attained

$$
\begin{aligned}
& \begin{array}{l}
\text { STEP 1: Find Kef for the reaction } \\
\text { Keg }=\frac{\left[\mathrm{SO}_{3}\right][\mathrm{NO}]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{NO}_{2}\right]} \\
\text { Req }=\frac{(4)(4)}{(1)(4)}=4
\end{array}
\end{aligned}
$$

STEP 2: Make ICE box. Remember the addition of the reactant is part of the initial concentration.

	$\mathrm{SO}_{2(g)}+\mathrm{NO}_{2(g)}$	$\gtrless \mathrm{SO}_{3(g)}+\mathrm{NO}_{(9)}$		
I	$1.0+3.0$	4	4	4
C	$-x$	$-x$	$+x$	$+x$
E	$4-x$	$4-x$	$4+x$	$4+x$

STEP 3: Solve

$$
\begin{aligned}
\text { Kew } & =4.0=\frac{(4+x)^{2}}{(4-x)^{2}} \\
x & =1.33 \quad[\mathrm{NO}]
\end{aligned} \quad \begin{aligned}
& \text { Resolve } \\
&=5.33 \mathrm{M}
\end{aligned}
$$

