<u>Chemistry 12</u> <u>Some Review of Chem 11 - Mole Stuff</u>

Part 1 - Changing Moles to Grams and Grams to Moles

The two conversion factors to remember are:

molar mass		
MM grams	&	1 mole
1 mole		MM grams

Where MM stands for the Molar Mass

The Molar Mass is calculated by adding up atomic masses from underneath the symbol and the name on the periodic table.

eg. The molar mass of Na₂SO₄ is calculated as follows:

2(23.0) + 32.1 + 4(16.0) = 142.1 grams/mole

Here are some examples of converting using the conversion factors:

1. 2.60 moles of $Na_2SO_4 =$ _____ grams

2.60 moles x $\frac{142.1 \text{ grams}}{1 \text{ mole}} = 369.46 \text{ grams}$

NOTE: In Chemistry 12 calculations, we must consider significant digits The 2.60 has 3 SD's and the 142.1 has 4 SD's. When multiplying, the answer must be rounded of to the least # of SD's in the numbers being multiplied. So this answer must to rounded to 3 SD's.

So the answer is 369 grams

ANOTHER NOTE: If a calculation is just one step in a series of calculations, DON'T round of the answer. If possible, leave it in your calculator the way it is and go from there.

2. 1053.24 grams of $K_2Se =$ _____moles

Solution:

The molar mass of K_2 Se is 2(39.1) + 79.0 = 157.2 g/mole

1053.24 grams of K₂Se x 1 mole = 6.700 moles

NOTE: The reason for the two 0's on the end of 6.700 is because the lowest # of SD's in the numbers divided is 4SD's (The 157.2) so the answer must have 4 SD's

Now some for you to do

Work each of the following out showing the work and the units in the work and in the answer! These will be marked and counted as homework marks. (2 marks each) ll_{a} , O

1. 833.4 grams of H₂O =
$$\frac{1}{18.5}$$
 moles $\frac{2.0}{13.5}$
Answer $\frac{46.3 \text{ mol}}{18.5}$ mole $\frac{1}{18.5}$ moles
2. 2.3 x 10³ motes of H₂SO₄ = $\frac{98.1 \text{ grams}}{1 \text{ mol}}$
4. 0 = $\frac{64.9}{16}$ mole $\frac{1}{1600}$
3. $\frac{3.84 \text{ grams of (NH4)_2CO_3}}{76.5}$ moles
3. $\frac{3.84 \text{ grams of (NH4)_2CO_3}}{76.5}$ moles
3. $\frac{1}{76.5}$ moles
3. $\frac{1}{76.5}$ moles
3. $\frac{1}{76.5}$ moles
4. $\frac{1}{76.$

$$30 = 3(16.0) = 49.0$$

$$\frac{-49.0}{-96.0}$$

4.
$$2.45 \times 10^{-2} \text{ moles of Al(OH)}_{3} = \underline{\qquad} \text{grams}$$

 $2.45 \times 10^{-2} \text{ mol} \times \frac{78.0 \text{ grams}}{1 \text{ mol}}$
5. $0.3558 \text{ grams of nitrogen dioxide} = \underline{\qquad} \text{moles}$
 $0.3558 \text{ grams of nitrogen dioxide} = \underline{\qquad} \text{moles}$
 $0.3558 \text{ grams of nitrogen dioxide} = \frac{1.91 \text{ grams}}{1.91 \text{ grams}}$
 $7.73 \times 10^{-3} \text{ md } MO_{2}$
Answer $\underline{\qquad} 0.00773$

Unit 1 of Chemistry 12 deals with RATES of reactions. Rates are always expressed as a change in amount (grams, moles, litres etc.) per change in time (seconds, min. etc.)

Rate = $\Delta \operatorname{amount} \Delta$ time

Here's an example of how the grams/mole conversions are used in rate expressions:

Change a rate of 0.035 grams H_2 per second to moles of H_2 per second

Solution:

$$\frac{0.035 \text{ g H}_2}{1 \text{ s}} \times \frac{1 \text{ mole H}_2}{2.0 \text{ g H}_2} = 0.0175 \text{ mol H}_2/\text{s} \text{ rounding to correct SD's} > 0.018 \text{ mol H}_2/\text{s}$$

Notice how the "g"s cancel out and you are left with the units of mol H_2/s

Here are some of these for you to do:

$$2.6 \times 10^{-2} \text{ moles of } Zn/second = grams of Zn/second mol -> 8$$

$$2.6 \times 10^{-2} \text{ mol} \times 65.4 \text{ G}$$

$$1 \text{ mol}$$
Answer $\frac{1.7a_{2}Zn}{3}$

7. 0.1962 grams of Zn/second = ____moles of Zn/second
0.1962 ZN x
$$\frac{1}{65.4\%}$$
 Answer 3.05×10^{-3} mol
8. 0.014 moles of CO₂/s = ___grams of CO₂/s
0.014 moles of CO₂/s = ___grams of CO₂/s
0.014 mol CO₂ x $\frac{44.0}{1}$ $\frac{9}{1001}$
9. 3.718 grams of CO(s) = ___moles of CO₂/min $\frac{5.2 \times 10^{-7}}{5cc}$ $\frac{9}{1}$
 3.718 grams of CO(s) = ___moles of CO₂/min $\frac{5.2 \times 10^{-7}}{5cc}$ $\frac{9}{1001}$
 $\frac{3.718}{5} \times \frac{1}{44.05} \times \frac{60}{1} \frac{5}{min} = \frac{5.07}{min}$ $\frac{mol}{CO_2}$

10. $1.12 \text{ L of } CO_2/s = ____g \text{ of } CO_2/\min(\text{at Standard Temp. and Pressure})$

HINT: Recall that for gases at STP there are 22.4 L/1 mole so conversion factors could be:

1.12 K CO2 × 1 mot × 44.0 g × 60 sec see 22.4 K 1 mot × 1 mot × 1 min

Answer 132.G/